Shannon Number in Chess

Claude Shannon

The Shannon number, named after the American mathematician Claude Shannon, is a conservative lower bound of the game-tree complexity of chess of 10120, based on an average of about 103 possibilities for a pair of moves consisting of a move for White followed by a move for Black, and a typical game lasting about 40 such pairs of moves.

Shannon’s calculation

Shannon showed a calculation for the lower bound of the game-tree complexity of chess, resulting in about 10120 possible games, to demonstrate the impracticality of solving chess by brute force, in his 1950 paper “Programming a Computer for Playing Chess”.[1] (This influential paper introduced the field of computer chess.)

Shannon also estimated the number of possible positions, “of the general order of 64 ! 32 ! 8 ! 2 2 ! 6 \scriptstyle {\frac {64!}{32!{8!}^{2}{2!}^{6}}}, or roughly 1043“. This includes some illegal positions (e.g., pawns on the first rank, both kings in check) and excludes legal positions following captures and promotions.

Number of plies (half-moves)Number of possible positionsNumber of checkmates
1200
24000
38,9020
4197,2818
54,865,609347
6119,060,32410,828
73,195,901,860435,767
884,998,978,9569,852,036
92,439,530,234,167400,191,963
1069,352,859,712,4178,790,619,155
112,097,651,003,696,806362,290,010,907
1262,854,969,236,701,7478,361,091,858,959
131,981,066,775,000,396,239346,742,245,764,219
1461,885,021,521,585,529,237
152,015,099,950,053,364,471,960

After each player has moved a piece 5 times each (10 ply) there are 69,352,859,712,417 possible games that could have been played.

From Wikipedia, the free encyclopedia